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Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors
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We predict the existence of multidimensional solitons that are localized in both space an('lighte
bullets”) in two- and three-dimensional self-induced-transparency media embedded in a Bragg grating. These
fully stable light bullets suggest new possibilities of signal transmission control and self-trapping of light.

PACS numbeps): 42.65.Tg, 78.66-w, 42.65.Sf

“Light bullets” are multidimensional solitons that are lo- =3 IS A3 =S — S+ P +2P,=0,
calized in both space and time. In the last decade they have (2b)
been theoretically investigated in various nonlinear optical
media[1-5], and recently, the first experimental observation P.A+HIAQP-3TW=0, (20

of a quasi-two-dimensiondRD) bullet was reported6]. A

promising candidate for observation of fully 2D and 3D light 1

bullets is a self-induced-transparen&iT) medium[7]. SIT W+ §(E+*P+E+P*)=O. (2d)
involves the undistorted and unattenuated propagation of an

electromagnetic pulse in a medium consisting of nearHereZiEZTo,uno(SFiSB)/h, where&: and&; denote the

resonant two-level atoms, irrespective of the carrler-sk)W'y varying amplitudes of respectively the forward and

frequency detuning from resonan@9]. In Ref.[7] we had backward propagating field, anay=nou \A27w.pg,

predicted that uniform 2D and 3D SIT-media can support . « the transition dipole moment ang, the density of

T e i e lgalr 10 St o lvel foms and W cencte he sl varyg
Y . amplitudes of the polarization and inversion, respectively,
A well-known example of such a structure is a resonantly

. - . andx are the longitudinal and transverse coordindiesinits
22;052;2% %;a?h?nr?:;:rtgsfgf?’ n?eéig gggggéfegrﬁgngalfpf the effective absorption length.¢), 7 denotes the time
wavelength nonabsorbing dielectric layers. Pulse transmisg? l#]]gs gg:ggrmfp;zt 5:I:§ dura#?r}?,) ?ﬁg Agér:?rzldi%nr:ﬂg-
sion through a RABR can produce SIT in the band gap of the q Yo

. . . . resonance frequency. The Fresnel nunbdF >0), which
structurg10,11] and gives rise to various types of 1D soliton . > .
dynamii[lz,f?ﬂ. Th?s prompted us to sne/grch for multidi- 9°Verns the transverse diffraction in 2D and 3D propagation,

mensional solitons in the form of light bullets in higher- has been incorporated in[16]. We have neglected polariza-

dimensional Bragg gratings. Our main finding is that for an tion dephasing and inversion decay, considering pulse dura-

Y, . .
o . tions that are short on the time scale of these relaxation pro-
Bragg reflectivity a 2D RABR can support stable light bul cesses. Equation€) are then compatible with the local

[ which are cl ly rel h in uniform SIT medi ; . .
[e;t]s, ch are closely related to those in uniform S ed aconstra|nt|73|2+W2:1, which corresponds to conservation

of the Bloch vector[17]. The parameterm is the central
quantity characterizing a RABR. It is defined as the ratio of
the two-level atom absorption length to the Bragg reflection
length and can be expressed as a,w.79/4. In 1D, the
solution of Eq.(2) is given by

A Bragg reflector consists of a linear optical medium with
a periodic modulation of the index of refraction along the
z-direction, given by[14]

n?(z)=n3[1+a, cog2k.z)]. (1)
3 T=2 asech®(r,z)e ™M HiNztig (33
Here ny and a; are constants anll.= w./c, with w. the . ' .
central frequency of the band gap. A resonantly absorbing 37 =—-2a’+2 sechd(r,z)e ™M HiaNzHie - (3p)
Bragg reflectoRABR) is then constructed by placing very

thin layers (much thinner than k) of two-level atoms, P=2 sech®(r,z)tanh®(7,z)e' ™M7HINztié (3¢
whose resonance frequency is closestg at the maxima of

this modulated index of refraction. We study the propagation W=secHl O(r,z)—tanlf O(r,2), (30
of an electromagnetic wave with frequency close dig

through a 2D RABR. Due to Bragg reflections, the electricwith O (r,z)=ar+ Ja?+2z+0,, =—(a?+1), N
field is decomposed into forward and backward propagating= — a.\/a?+ 2 and forAQ = 5(a?+ 1) [18]. Herea and®,
components which satisfy the 2D equati¢$] denote arbitrary real parameters. The shape of the filds

and " in equations(3) is very similar to the sine-Gordon
—i3t IS ST S S+ ST 2P, 2i P (SO soliton in a uniform 1D SIT medium, which is given by

=0, (2a) &(1,2)=2asecliat—2/a+ 0y). (4)
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the uniform solution, due to the retro-reflections, and leads to
additional phasefactors in the fields and polarization.

Also the 3D axisymmetric light bullet that was found in a
uniform SIT medium[7] has a counterpart in a 3D RABR.
The 3D RABR is described by equatioig) with 3, .(*)
replaced by3 (I +r=13 () wherer=\Xx?+y? is the
transverse radial coordinate. In the limit of largefor r
>1/|C|, an approximate 3D light bullet solution exists which
is of the same form as Ed@5), with x replaced byr and is
valid for |@|C?<1. It is in agreement with results of simu-
lation of the 3D equations using this solution as an initial
ansatz(deviations~5%), as isalso the case for a uniform

FIG. 1. Forward-propagating electric field in the 2D “light bul- medium. . .
let” in a RABR, |&|, as a function of timer (in units of the input We have checked that the light bulk) is stable for all
pulse durationr,) and transverse coordinase(in units of the ef- ~ values ofz by means of the Vakhitov-Kolokolov stability
fective absorption lengthy.y) after propagating the distance criterion, which says that a necessary condition for Stablllty
=1000. Parameters used correspondatel, C=0.1 and ©, is a positive derivative of the norm of the total light bullet
=—1000. The field is scaled by the constém(4ryun,). field with respect to the propagation constg2f]. This sta-

bility is also seen numericallichecked up ta@~ 10%).
Inspired by this analogy and the fact that there exists a light |t is straightforward to see that 2D light bullets of the
bullet in a uniform 2D SIT medium which reduces to the Sevariab|e_separated fonﬁ*(*),\,f(ﬂz)g(x), as we found in
soliton (4) in one dimension 7], we now search for a light- 5 ST medium with transversely-varying index of refraction
bullet solution of the 2D RABR equatiorg), which reduces  [21] do not exist in a 2D RABR. Substituting this form into
to the soliton(3) in 1D. This solution exists and is given by Eqs.(2a) and (2b) only yields a solution of the formx, + ()

IATLiBX H H
+_ JSech®, sech®, el M7+ nNz+ s ~e"*7e™* with A and B constants, which does not corre-
27 =2« ysechd, sechb e . (59 spond to a light bullet.

_ > i M r+i PNz i/l Experimentally, present-day nanolithography techniques
27 =-2a"+2 sech; sech, e ! ’ allow for fabrication of dielectric structures with layer thick-
(5b) :

nesses on the order of a few atomic layg2®,23, and the
study of light-matter interactions in such structures has de-
P=sech®, secl‘@z((tanh1+tanh®2)2 veloped into a vast research areal]. Realization of light
bullets in the resonantly absorbing gratings discussed above
- 5 presents a new experimental challenge in this field and
+7a°C(tanh®; —tanh®,) would be the first demonstration of localized multidimen-
sional solitons in optical Bragg grating structures. In order to
realize a RABR, quantum wells embedded in a semiconduc-
tor structure with a spatially varying index of refraction may
be used. The excitons in the quantum wells then act as ef-

[E|

1/2
—2(sech ©,+sech @2)]2] gl MriNzt iy,

(50 fective two-level systems, and typical system parameters are:
W=[1—|P[2]¥2 (5d) the average refractive indemy~3.6, the central gap fre-
quency w.~10"s !, the density of the excitons,
with O,(r.2)=ar+Ja?+2z+0y+Cx, O,(r,z)=ar ~10°-10°cm 3 and the characteristic absorption time

+aZ+2z+0,—Cx, the phasev=arctafim(P)/Re(P)]  and length 7,~10""*-10"" s and ae~10'-1Cm™*
andC a real constant. EquatiortS) form our central result. [13,23. The parameter, can vary from 0 to 100 and the
They satisfy Eqs(2a) and (2b) exactly and Egs(2c) and ~ detuningAQ~10"%-10"s™%, which satisfies the condition
(2d) to order| | C?, which requires thafa|C2<1. They are AQ<w.. Using an incident optical pulse generated by a
valid for arbitrary 7, so both for weak g<1) and strong laser with pulse duratiom,<0.1 ns, one has,>10"" s .
(»>1) reflectivities of the Bragg grating, provided the de- The incident pulse should be of uniform transverse intensity
tuning AQ remains small with respect to the gap frequencyand satisfy acsd*\o<1, where\, and d are its carrier
we, AQ<w = p<o./(a?+1). Comparison with numeri- Wwavelength and diameter respectively, in order to include
cal simulations of Eqs(2), using(5) as an initial ansatz, test transverse diffractiori25]. For Ao~10"* m one thus re-
this approximation and show that it is indeed a good approxiquires d<10 % m, or a transverse medium sidg,~1
mation to the exact solution, which predicts the shape of the- 10um. The parametew in the light-bullet solution(5),
bullet still within 98% accuracy after propagating a large which determines the amplitude of the bullet and its decay in
distance, typicallyz~1000, as in Fig. 1. time and z, corresponds toa=\v,aenTy/(1— v ,aefTp),
Equations(5) form the extension of the light-bullet solu- with v, the longitudinal velocity of the pulse in the medium,
tion in a uniform SIT medium, Eq(8) in Ref. [7], to a and can thus be controlled by the incident pulse duration and
RABR and reduce to the latter fay=0 [19]. Comparing the velocity. For atomic-gas media one typically has-0.1
two, the presence of the Bragg grating adds a second field te 10. The paramete8 is similarly controlled and given by
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B~ K, Ly~1-10, withk, the wave vector component along absorbing Bragg reflectors. These offer the possibility to re-
the transverse directior. The light bullets as depicted in alize a novel type of filters, which stably transmit selected
Fig. 1 decay on a transverse length scale-dfum and time  signal frequencies through their spectral gap and simulta-
scale~10"**s. The dephasing time discussed in RB8]is  neously block others. They can also be used to both spatially
also~10" s, but cryogenic conditions can extend this well and temporarily localize light in certain frequency bands.
into the nsec rangE26]. The construction of suitable struc-
tures constitutes an experimenta| cha||enge_ M.B. acknowledges financial support from the Israeli
In summary, we have studied and predicted the existenc@ouncil for Higher Education. Support from ISF, Minerva
of fully stable light bullets in multidimensional resonantly and BSF is acknowledged by G.K.
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